
 
 

Int. J. of Applied Mechanics and Engineering, 2015, vol.20, No.2, pp.397-406 
DOI: 10.1515/ijame-2015-0026 

 
 
 

ANALYTICAL SOLUTION TO THE MHD FLOW OF MICROPOLAR 
FLUID OVER A LINEAR STRETCHING SHEET 

 
P.G. SIDDHESHWAR 

Department of Mathematics, Bangalore University 
Central College Campus Bangalore   

560 001, INDIA 
 

U.S. MAHABALESHWAR* 
Department of Mathematics 

Government First Grade College for Women 
 Hassan 573 201, Karnataka, INDIA 

E-mail: ulavathi@gmail.com 

 
 

The flow due to a linear stretching sheet in a fluid with suspended particles, modeled as a micropolar fluid, is 
considered. All reported works on the problem use numerical methods of solution or a regular perturbation 
technique. An analytical solution is presented in the paper for the coupled non-linear differential equations with 
inhomogeneous boundary conditions.  
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1. Introduction  
 
 The theory of microfluids, as developed by Eringen (1999), has been a field of active research for the 
last few decades as this class of fluids represents mathematically and physically many industrial applications 
important fluids like paints, blood, body fluids, polymer, colloidal fluids and suspension. On account of the 
recent advances in electronics, nuclear energy and space technology, the study of buoyancy induced flows of 
micropolar fluid still continues to be a major area of interest. The micromotion of fluid elements, spin inertia 
and the effects of the couple stresses are very important in micropolar fluids. The theoretical study of 
micropolar fluid flow has important engineering applications in systems having liquids with suspended 
particles (unclean liquids) as a working medium (see Lukaszewicz, 1999). In micropolar fluids, rigid 
particles in a small volume element can rotate about the centroid of the volume element. The micropolar 
fluids in fact can predict behavior at microscale and rotation is independently explained by a microrotation 
vector. 

To the knowledge of the author no paper has presented an analytical solution to the stretching 
sheet boundary layer flow of a micropolar liquid. Even numerical works tackling this important problem 
are very sparse (see Heruska et al., 1986; Agarwal et al., 1989; Hassanien and Gorla, 1990; Hady, 1996; 
Hassanien, 1998; Mahammadein and Gorla, 2000; Kelson and Desseaux, 2001; Kelson and Farrell, 2001; 
Seddeek, 2001; Abo- Eldahab and Ghonaim, 2003; Bhargava et al., 2003; Nazar et al., 2004; Eldabe et al., 
2005).  
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 The present study throws light on the analytical solution of a class of boundary layer equations 
arising in the stretching sheet problem involving coupled nonlinear differential equations that typically arise 
in one more stretching sheet boundary layer flows. 
 
2. Mathematical formulation and solution 
 
 A steady, incompressible micropolar liquid that is coerced to flow by a horizontal sheet stretching in 
the x-direction (see Fig.1) is considered. 
 

 
 

Fig.1. Schematic of the stretching sheet problem. 
 

 The liquid issues from a thin slit as is seen in polymer extrusion processes (Rajagopal et al., 
1984; Siddheshwar and Mahabaleswar, 2005). The sheet is supposedly stretched in the x-direction such 
that the x-component of velocity varies linearly with x along its surface. In practice, it is only an 
extremely meticulous pulling of the sheet that can allow one to assume linear stretching. The flow is 
subjected to a uniform transverse magnetic field 0H  along the y-axis. The induced magnetic field can be 
neglected, since the magnetic Reynolds number is assumed to be very small. The governing equations for 
the considered micropolar liquid flow within the boundary layer approximation may be written as (see 
Seddeek, 2001) 
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where the quantities have their meaning as mentioned in nomenclature. The boundary conditions are given 
by  
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where s  is a parameter relating the microrotation to the asymmetric part of the stress with .0 s   The 
condition on  ,x 0  in Eqs (2.4) reduces to no relative spin and no asymmetric part of the stress on the 

boundary in the limit ands 0 s   respectively. We now define the following dimensionless 
variables  
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and substituting the same in Eqs (2.1)-(2.4) yields 
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The various parameters in Eqs (2.6)-(2.9) are as defined in nomenclature.  
 The stream function  ,X Y  is now introduced in Eqs (2.6)-(2.9) to obtain the following 

equations 
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 The above boundary value problem (BVP) suggests the solution of the form 
 
     ,X Y Xf Y  ,                                                               (2.13) 
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 Substituting Eqs (2.13) and (2.14) in Eqs (2.10)-(2.12) and equating the coefficients of 

, and2 3X X X , yields the following BVP 
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 and 10 S 2  . The solution of Eqs (2.15) and (2.16), subject to the conditions in Eqs (2.17), 

can be obtained by following the new analytical method as 
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 The parameter 1s  is an important one. 

 
3. Results and discussion 
 
  In the paper the MHD boundary layer flow and heat transfer in a micropolar liquid over a stretching 
sheet is investigated. Similarity solution is used to obtain the velocity distribution and spin which are 
governed by non-linear differential equations. The velocity, both transverse as well as axial, is a decreasing 
function of Y (transverse coordinate) as it is an exponential function with negative argument. It is clear from 
Eq.(2.18) that the argument of the exponential function involves an important parameter of the problem 
namely 1s  which is a function of the coupling coefficient 2k , microrotation diffusivity parameter 2G , 
Chandrasekhar number Q, and microrotation concentration coefficient S. Before proceeding with the 
discussion of results obtained in the paper, the following needs to be noted 
 
     ,U X f Y V f Y   . 

 
 Figure 2 shows the variation of  f Y  with Y for different values of Q. As seen earlier,  f Y  and 

 f Y  are respectively related to the axial velocity U and transverse velocity V. In Fig.2 we see that U is an 

exponentially decaying function of Y and the effect of increasing Q is to restrict the dynamics to the vicinity 
of the stretching sheet. In Fig.3 the nature of  f Y , as seen in Fig.2, is reiterated. Figure 3 shows the 

variation of  f Y  with Y for different values of S. As documented in nomenclature the parameter S has to 

do with the boundary condition on the spin. From the figure it is apparent that the effect of increasing S is to 
decrease U. A similar effect of 1G on  f Y  is shown in Fig.4. The effect of increasing 2k  on  f Y  is 

opposite to that of increasing 1G  on  f Y . This is shown in Fig.5. 
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Fig.2. Plot of  f Y  versus Y for different values of Chandrasekhar number Q. 

 
 

 
 

Fig.3. Plot of  f Y  versus Y for different values of microrotation concentration coefficient S. 
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Fig.4. Plot of  f Y  versus Y for different values of microrotational coupling parameter G1. 

 
 

 
 

Fig.5. Plot of  f Y  versus Y for different values of microrotational diffusivity parameter k2. 
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 Like  f Y ,  h Y  is also a decreasing function of Y. The effect of increasing Q on  h Y  is to decrease 

 h Y . This is due to the fact that  h Y  is an exponentially decreasing function (see Eq.(2.19). Compared to the 

effect of Q on  h Y , the effect of S on  h Y  is not so pronounced. This is shown in Figs 6 and 7. 

 

 
 

Fig.6. Plot of  h Y  versus Y for different values of Q. 
 

 
 

Fig.7. Plot of  h Y  versus Y for different values of s. 
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Nomenclature 
 
 1G  – microrotational coupling  

 2G  – microrotation diffusivity  parameter 

 H0 – applied uniform vertical magnetic field 
 2k  – microrotational diffusivity parameter 

 M – 0H



 (Hartmann number)  

 Q – square of M 
 S – microrotation concentration coefficeint  
 s  – microrotation to the asymmetric part of the stress 
 U – dimensionless horizontal velocity  
 u – dimensional horizontal velocity component 
 V – dimensionless vertical velocity  
 v  – dimensional vertical velocity 
 X – dimensionless horizontal coordinate 
 x – horizontal coordinate 
 Y – dimensionless vertical coordinate 
 y – vertical coordinate 
   – stretching sheet coefficient 

   – 



 (kinematic viscosity) 

   – density 
   – electrical conductivity 
   – stream function 

   – angular velocity 
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